
Next-Generation Protection Against Reverse Engineering
4 February 2005

Chris Coakley, Jay Freeman, Robert Dick
ccoakley@anacapasciences.com; saurik@saurik.com; radick@anacapasciences.com

Purpose
This white paper describes a next-generation, software-protection technique that prevents certain
classes of automated reverse engineering tools1 from successfully attacking compiled software to
expose underlying code. This paper:

• Presents the issues
• Describes the new protection technique
• Proves the technique in a critical test
• Provides all proof-of-concept code
• Identifies a strategy to extend this protection to national-interest software

Audience
This paper is written for software protection managers, as well as software development
professionals. Managers may want to review the background sections below before examining
the proof-of-concept description and the strategy for protecting national-interest software.
Software professionals may want to scan the proof-of-concept description, then examine the code
provided on-line at http://www.anacapasciences.com/projects/reverseengineering/index.html.

The Software Protection Arms Race
Provably, the arms race between software protection and software attack (reverse engineering)
cannot be won by either side. The race is a never-ending spiral, first favoring one side and then
the other. In the arena of automated reverse engineering, the attack side has been moving into
the favored position, due to the success of emergent, next-generation tools called “de-obfuscating
disassemblers”. Our next-generation protection technique, however, neutralizes these tools and
moves protection back into a favored position.

History
Software engineers originally developed the first reverse engineering tools to help automate the
process of debugging their software. These tools – called “disassemblers” – are still an
indispensable part of modern software engineering.
As disassemblers became more powerful, however, people began using them to automatically
reverse engineer software developed by other parties. The motivation for exposing underlying
code is often to steal intellectual property, circumvent anti-piracy techniques, steal information, or
compromise essential systems.
In an effort to neutralize the threat from illegitimate reverse engineering, software engineers
developed techniques to obfuscate (hide) code before it was shipped to customers. They still
relied, of course, on disassemblers to debug non-obfuscated versions of their software.
The early obfuscation techniques took advantage of certain accidental weaknesses of legacy
disassemblers. These early protection techniques only worked against the generation of
disassemblers that contained the accidental weaknesses.

1 This paper focuses on protection against automated disassemblers that can rapidly reverse
engineer large sections of program logic. We do not address protection against emulators, which
involve a manual, labor-intensive process only practical for reverse engineering small sections of
code.

Anacapa Sciences, Inc. © Copyright 2005. All rights reserved. 1 of 6

mailto:ccoakley@anacapasciences.com
mailto:saurik@saurik.com
mailto:radick@anacapasciences.com
http://www.anacapasciences.com/projects/reverseengineering/index.html

Research by academics and by software pirates ultimately yielded new approaches to building
disassemblers that did not have these accidental weakness. Although the research motivations
for the two groups differed greatly, both avenues have led to very similar kinds of new reverse
engineering tools, the de-obfuscating disassemblers.

Status
The new disassemblers have had remarkable success against current protection techniques [1].
That success threatens the security of many types of essential software.
Fortunately, however, academic researchers have recently identified an avenue for neutralizing
emerging next-generation disassemblers [1]. This avenue takes advantage of certain inherent
weaknesses in all approaches to automated reverse engineering, both new and old. The new
approach can be used to create “heavy obfuscators” that resist a broad range of disassemblers,
including those of the next generation.

The Software Protection Battleground
Threat Model
We are concerned here about threats in which:

• A hostile party may acquire the executable (binary) code for an important, complex
application.

• The hostile party must correctly disassemble large portions of the binary to meet his
objectives.

• The application is sufficiently complex that using an emulator and extensive human-
software interactive techniques to disassemble the binary are impractical.

• The performance requirements of the application are sufficiently stringent that heavy
encryption of the binary is impractical.

The protection objective, therefore, is to heavily obfuscate the binary so it is impervious to
automatic disassembly, but without incurring a large reduction in performance.

Software Architectural Context
The adage, “Choose your battles,” is true in software protection - some battles cannot be won.
For example, reverse engineering is fundamentally unstoppable on certain modern computer
architectures. These architectures include PowerPC, UltraSPARC, MIPS, and other architectures
that use Fixed Length Instructions (FLI). We do not deal with these architectures.
The battleground of interest is protecting against automated reverse engineering of software for
architectures that use Variable Length Instructions (VLI). These architectures are used by Intel,
AMD, and Transmeta. On these VLI architectures, reverse engineering is, in fact, stoppable.
Because a good deal of national-interest software runs on these architectures, notably Intel’s, this
battleground is important.
The context for the battle involves the method that VLI architectures use to encode binary files,
summarized here:

• Computer instructions occupy between 1 and 8 bytes.
• Instructions follow one after another with no padding.
• Each encoding of instruction sequences has a unique starting point for correct decoding.
• All instruction sequences in a program are in serial order with arbitrary padding between

them.
• The padding can be any length and may contain any content (including program data),

or contain nothing.
• The padding content may be “garbage” designed to look like data or instructions.

The strategy for attack has these characteristics:

Anacapa Sciences, Inc. © Copyright 2005. All rights reserved. 2 of 6

• All disassemblers begin with a binary file and attempt to decode the file to end with
human-readable code.

• Whether the human-readable code is correct or not is dependent upon decoding the file
from correct begin- and end-points for each of the many sequences of variable length
instructions in the binary file.

• The inherent difficulty is that the begin- and end-points can only be identified correctly by
analyzing code after it has been decoded.

• Disassemblers partially resolve this difficulty by systematically guessing the begin- and
end-points.

• The newly emerging disassemblers have become efficient and powerful in homing in on
correct guesses.

The strategy for protection relates to some of the same characteristics:
• The only begin-point that a disassembler tool knows with certainty is the first begin-point.
• All end-points (and all other begin-points) must be determined by code analysis.
• While guessing these points can be made efficient in emergent disassemblers, deriving

absolute knowledge about these points through some algorithm is a fundamentally
unsolvable problem

• Until now, no one on the protection side has exploited the fundamentally unsolvable
attack problem to neutralize correct guessing by disassemblers.

More About Reverse Engineering Methods
Before describing the new protection strategy, it’s helpful to present a little more background
information about current and emerging attack strategies.
Disassemblers work by automatically guessing where to begin decoding, using one of the
techniques below. Hopefully (from the attacker’s viewpoint) the guessing leads to human-
readable code that makes sense with minimum additional manual analysis.

Linear Sweep
Linear sweep starts at the beginning of the software binary file and decodes instructions in
sequence until it generates an error. Then it tries to find the next nearest place to re-start
decoding. This technique is very fast, but it does not account for the fact that jumps in code can
land at arbitrary locations. With jump instructions, the next nearest place to begin decoding is not
always the best.

Recursive Descent
Recursive descent is “control flow aware.” As with linear sweep, recursive descent disassemblers
will start at the beginning of a file. However, if a jump statement is encountered, the disassembler
will stop decoding at the current location and re-start decoding from the jump target location. The
difficulty with this approach is that some jump targets are computed based on data input. The
inability to guess the jump target when analyzing a static binary (without data processing for
computing jump points) results in large segments of code that remain encoded (and obfuscated).

Hybrid Approaches
Hybrid approaches first use recursive descent to decode as much of a binary file as possible.
This leaves some sections of the binary file still encoded. Then the hybrid approach switches to
linear sweep for the sections that were still encoded. The linear sweep helps identify new code
blocks that were missed during the recursive descent. After completing the linear sweep, the
hybrid approach then switches back to recursive descent mode. This alternating process
continues until it fails to identify new blocks of code.
Next-generation de-obfuscating disassemblers use these hybrid approaches, and they are
becoming extremely effective against current-generation protection techniques.

Anacapa Sciences, Inc. © Copyright 2005. All rights reserved. 3 of 6

Next-Generation, Broad-Spectrum Protection
Emergence of the new breed of de-obfuscating disassemblers has spawned research in methods
to protect against them. We have examined published and unpublished research on ways to
exploit inherent weaknesses in both legacy disassemblers and the new de-obfuscating
disassemblers. We’ve adapted and combined selected exploitations to create a powerful hybrid
exploitation that compiles heavily obfuscated C binaries.
Before presenting our heavy-obfuscation compiler, we’ll summarize the exploitive techniques we
employ. Each technique prevents an attacking disassembler from producing human-readable
code.

• Branch Point Obfuscation – In this technique, the target of a branch statement is
prefaced with a one byte jump statement. This preface causes the next four bytes (the
valid instructions) to be erroneously decoded as a new jump target. An attacking
disassembler would not be able to identify the four bytes of valid instructions.

• Computed Branch Target – In this technique, the target address of a branch statement is
obfuscated by requiring that the address value be computed. The required computation
can be arbitrarily difficult – as protection engineers, we would always choose a level of
difficulty that exceeds current and emerging disassembler capabilities. When the
attacking disassembler miscalculates the address value, it will incorrectly identify the next
code segment’s starting location. This incorrect identification will result in decoding invalid
code as if it were valid.

• False predicates – In this technique, the normal function of a conditional branching
statement is subverted. All non-conditional branches are replaced with conditional
branches, which require a disassembler to examine both branches. Each of our new
conditional branches are coupled to a false predicate. A false predicate always yields the
same result, meaning that one side of the conditional branch is always taken, making the
conditional branch, in effect, a non-conditional branch. This causes additional, but
unfruitful work for an attacking disassembler. Whatever lies on the non-taken branch, be
it data or padding, will be decoded as if it were valid instructions.

• Combined defense – This technique combines elements of the above techniques to
mutually strengthen each other. For example, the second branch of a false predicated
conditional branch is combined with branch point obfuscation. We make the branch
always taken require a computed branch target. We make the second, not taken, half of
the branch point to the special one byte jump statement inserted using Branch Point
Obfuscation. To an attacking disassembler, this makes the invalid code indistinguishable
from valid code and provides no incentive (and an additional disincentive) to find the valid
code.

Proof-of-Concept, Next-Generation
Obfuscation Compiler
We used all of the exploitation techniques above in
developing a proof-of-concept, next-generation, heavy-
obfuscation compiler that protects binaries against both
legacy and emergent disassemblers.

Approach
We modified a freely available C compiler – called tcc
[3] – to produce heavily obfuscated executable binaries.
We used tcc because it is very small and particularly
easy to modify. Our new obfuscation technology,
however, will work with any compiler that targets a VLI
machine.
The figure to the right shows the compilation steps produced
by the modified version of tcc. The source code for the

Anacapa Sciences, Inc. © Copyright 2005. All rights reserved. 4 of 6

modified tcc is available for download at
http://www.anacapasciences.com/projects/reverseengineering/index.html

Test
Testing involved the following steps:

1. We developed three examples of program code, representing increasing levels of
complexity.

2. We ran the three programs through an ordinary compiler.
3. We used a current-technology disassembler – objdump – to reverse engineer the

programs. Objdump was successful in reverse engineering the simplest program,
partially successful on the moderately complex program, and unsuccessful on the most
complex program.

4. We also obtained a copy of a next-generation, de-obfuscating disassembler from the
University of California at Santa Barbara (UCSB). This disassembler currently holds the
record in Linn and Debray’s benchmark test of disassembler effectiveness [2]. UCSB’s
disassembler was successful in reverse engineering all three programs.

5. We then ran the three test programs through the modified tcc compiler to obfuscate them
heavily.

6. All three of the heavily-obfuscated programs completely resisted reverse engineering by
objdump and UCSB’s disassembler. The disassemblers could not even determine the
main program entry points for any of the obfuscated programs.

Proof
A complete listing of the code for each of the three programs, the correct assembly, and each of
the disassembler outputs are available for downloaded and examination at
http://www.anacapasciences.com/projects/reverseengineering/index.html.

Application
Our heavy obfuscation technology can be used in conjunction with other protection techniques to
achieve broad-spectrum protection. If multiple protection measures (PMs) are used inline, our
heavy obfuscator is inserted at the last point in the chain, prior to generation of the binary, as
shown in the figure below.

 Source PM1 Source1 PMn Sourcen

Assembly PMa Assemblya PMm Assemblym

Heavy Obfuscator Binary Executable

Strategy for Protecting National-Interest Software
We have developed and demonstrated new, broad-spectrum, heavy-obfuscation technology for
protecting software binaries for Intel x86 machines, which run much of the national-interest
software. Currently, the new technology is in the form of a heavy-obfuscation compiler based on
tcc, a small compiler that is convenient for proof-of-concept demonstrations.

Primary Thrusts
To be broadly useful, however, the new principles of heavy obfuscation should be adapted to
develop at least three different sets of developer tools to protect software on a wide front:

• A heavy-obfuscation version of gcc, which is used to compile nearly 100% of all Linux
executables. The advantages of gcc over tcc are the existence of multiple front ends

Anacapa Sciences, Inc. © Copyright 2005. All rights reserved. 5 of 6

http://www.anacapasciences.com/projects/reverseengineering/index.html
http://www.anacapasciences.com/projects/reverseengineering/index.html

(Fortran, C++, and other languages) and gcc’s renowned code optimizers. Creating a
heavy-obfuscation version of gcc will involve a scaled-up, somewhat-modified version of
the process we used to create the heavy-obfuscation version of tcc.

• A heavy obfuscator tool set to protect Microsoft Windows binary files. Creating this tool
set is a multi-step process that employs a mixture of off-the-shelf compilers and custom-
written assemblers and linkers. The resulting heavy obfuscator tools will protect binaries
produced from C, C++, ADA, and Fortran. In fact, the resulting heavy obfuscator tools
will enable protection for any existing compiler that can produce x86 assembly output.

• Heavy-obfuscation tools for protecting other VLI architectures, especially the ARM
processors used in embedded, mission critical systems. Creation of these tools is more
complicated due to the fact that other architectures will require different instruction
selection and substitution criteria from the x86 architecture this research focuses on.

Recommendations
We recommend two courses of action to protect national-interest software from next-generation,
already-powerful, de-obfuscating disassemblers:
1. Because a significant segment of national-interest software involves Microsoft Windows binary
files running on x86 machines, we recommend the immediate development of a heavy-
obfuscation tool set for this domain. A detailed workplan for producing an initial version of this
tool set is available from the authors on request.
2. Because a growing segment of national-interest software will likely involve Linux executables
over the next few years, we recommend development of a heavy obfuscation version of gcc,
starting within the next six months. A detailed workplan for producing a preliminary version of this
tool is also available on request.

Acknowledgements
We would like to thank Professor Giovanni Vigna and Dr. Chris Kruegel of UCSB for lending us
the code to their de-obfuscating disassembler. Without their cooperation, the stringent test of our
new protection technology would not have been possible.

References
[1] C. Kruegel, W. Robertson, F. Valeur, G. Vigna, “Static Disassembly of Obfuscated Binaries”,
to appear in Proceedings of the 13th USENIX Security Symposium, San Diego, CA, August 2004.
[2] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static
disassembly”, Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), pages 290-299, Washington, DC, October 2003.
[3] Tiny C Compiler homepage: http://fabrice.bellard.free.fr/tcc/

Anacapa Sciences, Inc. © Copyright 2005. All rights reserved. 6 of 6

http://fabrice.bellard.free.fr/tcc/

	Purpose
	Audience
	The Software Protection Arms Race
	History
	Status

	The Software Protection Battleground
	Threat Model
	Software Architectural Context

	More About Reverse Engineering Methods
	Linear Sweep
	Recursive Descent
	Hybrid Approaches

	Next-Generation, Broad-Spectrum Protection
	Proof-of-Concept, Next-Generation Obfuscation Compiler
	Approach
	Test
	Proof
	Application

	Strategy for Protecting National-Interest Software
	Primary Thrusts
	Recommendations

	Acknowledgements
	References

